Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 48

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Modeling of the P2M past fuel melting experiments with the FEMAXI-8 code

Mohamad, A. B.; Udagawa, Yutaka

Nuclear Technology, 210(2), p.245 - 260, 2024/02

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

High-temperature rupture failure of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka

Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Study on the effect of long-term high temperature irradiation on TRISO fuel

Shaimerdenov, A.*; Gizatulin, S.*; Dyussambayev, D.*; Askerbekov, S.*; Ueta, Shohei; Aihara, Jun; Shibata, Taiju; Sakaba, Nariaki

Nuclear Engineering and Technology, 54(8), p.2792 - 2800, 2022/08

 Times Cited Count:7 Percentile:88.9(Nuclear Science & Technology)

JAEA Reports

Continuous improvement activities on nuclear facility maintenance in Nuclear Science Research Institute of Japan Atomic Energy Agency in 2021

Task Force on Maintenance Optimization of Nuclear Facilities

JAEA-Technology 2022-006, 80 Pages, 2022/06

JAEA-Technology-2022-006.pdf:4.24MB

The Task force on maintenance optimization of nuclear facilities was organized in the Nuclear Science Research Institute (NSRI) of Japan Atomic Energy Agency (JAEA) since November 2020, in order to adequately respond to "the New nuclear regulatory inspection system since FY 2020" and to continuously improve the facility maintenance activities. In 2021, the task force has studied (1) optimization of the importance classification on maintenance and inspection of nuclear facilities, and (2) improvement in setting and evaluation of the performance indicators on safety, maintenance and quality management activities, considering "the Graded approach" that is one of the basic methodologies in the new nuclear regulatory inspection system. Each nuclear facility (research reactors, nuclear fuel material usage facilities, others) in the NSRI will steadily improve their respective safety, maintenance and quality management activities, referring the review results suggested by the task force.

Journal Articles

OECD/NEA benchmark on pellet-clad mechanical interaction modelling with fuel performance codes; Influence of pellet geometry and gap size

Soba, A.*; Prudil, A.*; Zhang, J.*; Dethioux, A.*; Han, Z.*; Dostal, M.*; Matocha, V.*; Marelle, V.*; Lasnel-Payan, J.*; Kulacsy, K.*; et al.

Proceedings of TopFuel 2021 (Internet), 10 Pages, 2021/10

JAEA Reports

Improvement of intragranular fission gas behavior model for fuel performance code FEMAXI-8

Udagawa, Yutaka; Tasaki, Yudai

JAEA-Data/Code 2021-007, 56 Pages, 2021/07

JAEA-Data-Code-2021-007.pdf:5.05MB

Japan Atomic Energy Agency (JAEA) has released FEMAXI-8 in 2019 as the latest version of the fuel performance code FEMAXI, which has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly normal operation conditions and anticipated transient conditions. This report summarizes a newly developed model to analyze intragranular fission gas behaviors considering size distribution of gas bubbles and their dynamics. While the intragranular fission gas behavior models implemented in the previous FEMAXI versions have supported only treating single bubble size for a given fuel element, the new model supports multiple gas groups according to their size and treats their dynamic behaviors, making the code more versatile. The model was first implemented as a general module that takes arbitrary number of bubble groups and spatial mesh division for a given fuel grain system. An interface module to connect the model to FEMAXI-8 was then developed so that it works as a 2 bubble groups model, which is the minimum configuration of the multi-grouped model to be operated with FEMAXI-8 at the minimum calculation cost. FEMAXI-8 with the new intragranular model was subjected to a systematic validation calculation against 144 irradiation test cases and recommended values for model parameters were determined so that the code makes reasonable predictions in terms of fuel center temperature, fission gas release, etc. under steady-state and power ramp conditions.

Journal Articles

Analytical study of SPERT-CDC test 859 using fuel performance codes FEMAXI-8 and RANNS

Taniguchi, Yoshinori; Udagawa, Yutaka; Amaya, Masaki

Annals of Nuclear Energy, 139, p.107188_1 - 107188_7, 2020/05

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

Journal Articles

The Effect of base irradiation on failure behaviors of UO$$_{2}$$ and chromia-alumina additive fuels under simulated reactivity-initiated accidents; A Comparative analysis with FEMAXI-8

Udagawa, Yutaka; Mihara, Takeshi; Taniguchi, Yoshinori; Kakiuchi, Kazuo; Amaya, Masaki

Annals of Nuclear Energy, 139, p.107268_1 - 107268_9, 2020/05

AA2019-0372.pdf:0.81MB

 Times Cited Count:3 Percentile:35.51(Nuclear Science & Technology)

Journal Articles

Benchmark of fuel performance codes for FeCrAl cladding behavior analysis

Pastore, G.*; Gamble, K. A.*; Cherubini, M.*; Giovedi, C.*; Marino, A.*; Yamaji, Akifumi*; Kaji, Yoshiyuki; Van Uffelen, P.*; Veshchunov, M.*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1038 - 1047, 2019/09

Oxidation-resistant iron-chromium-aluminum (FeCrAl) steels have been proposed for application as cladding materials in light water reactor fuel rods with improved accident tolerance. Within the Coordinated Research Project ACTOF of the International Atomic Energy Agency (IAEA), a fuel performance modeling benchmark for FeCrAl cladding behavior was conducted. During this effort, calculations were performed with various fuel performance codes for a set of fuel rod problems with FeCrAl steel as cladding material, and results were compared to each other.

JAEA Reports

Development of fuel performance code FEMAXI-8; Model improvements for light water reactor fuel analysis and systematic validation

Udagawa, Yutaka; Yamauchi, Akihiro*; Kitano, Koji*; Amaya, Masaki

JAEA-Data/Code 2018-016, 79 Pages, 2019/01

JAEA-Data-Code-2018-016.pdf:2.75MB

FEMAXI-8 is the latest version of the fuel performance code FEMAXI developed by JAEA. A systematic validation work has been achieved against 144 irradiation test cases, after many efforts have been made, in development of new models, improvements in existing models and the code structure, bug-fixes, construction of irradiation-tests database and other infrastructures.

Journal Articles

OECD/NEA benchmark on pellet-clad mechanical interaction modelling with fuel performance codes; Impact of number of radial pellet cracks and pellet-clad friction coefficient

Dost$'a$l, M.*; Rossiter, G.*; Dethioux, A.*; Zhang, J.*; Amaya, Masaki; Rozzia, D.*; Williamson, R.*; Kozlowski, T.*; Hill, I.*; Martin, J.-F.*

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 10 Pages, 2018/10

Journal Articles

Performance degradation of candidate accident-tolerant cladding under corrosive environment

Nagase, Fumihisa; Sakamoto, Kan*; Yamashita, Shinichiro

Corrosion Reviews, 35(3), p.129 - 140, 2017/08

 Times Cited Count:13 Percentile:50.97(Electrochemistry)

As the lessons learnt from the accident at the Fukushima Daiichi Nuclear Power Station, advanced cladding materials are being developed to enhance accident tolerance comparing with conventional zirconium alloys. The present paper reviews the progress of the development and summarizes subjects to be solved for the enhanced accident-tolerance fuel cladding, focusing on performance degradation under various corrosive environmental conditions that should be considered in designing the LWR fuel.

Journal Articles

Research and development on HTGR fuel in the HTTR project

Sawa, Kazuhiro; Ueta, Shohei

Nuclear Engineering and Design, 233(1-3), p.163 - 172, 2004/10

 Times Cited Count:59 Percentile:95.46(Nuclear Science & Technology)

In the high temperature gas-cooled reactors (HTGRs), refractory coated fuel particles are employed as fuel to permit high outlet coolant temperature. The High Temperature Engineering Test Reactor (HTTR) employs Tri-isotropic (Triso) coated fuel particles in the prismatic fuel assembly. Research and development on the HTTR fuel has been carried out spread over about 30 years, in fuel fabrication technologies, fuel performance, and so on. Furthermore, for upgrading of HTGR technologies, an extended burnup TRISO-coated fuel particle and an advanced type of coated fuel particle, ZrC-coated fuel particle in order to keep the integrity at higher operating temperatures has been developed. The present paper provides experiences and current status of research and development works for the HTGR fuel in the HTTR Project.

Journal Articles

Nuclear, thermal and hydraulic design for Gas Turbine High Temperature Reactor (GTHTR300)

Nakata, Tetsuo*; Katanishi, Shoji; Takada, Shoji; Yan, X.; Kunitomi, Kazuhiko

Nihon Genshiryoku Gakkai Wabun Rombunshi, 2(4), p.478 - 489, 2003/12

no abstracts in English

Journal Articles

Integrity confirmation tests and post-irradiation test plan of the HTTR first-loading fuel

Sawa, Kazuhiro; Sumita, Junya; Ueta, Shohei; Suzuki, Shuichi*; Tobita, Tsutomu*; Saito, Takashi; Minato, Kazuo; Koya, Toshio; Sekino, Hajime

Journal of Nuclear Science and Technology, 38(6), p.403 - 410, 2001/06

 Times Cited Count:7 Percentile:48.68(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Fabrication of the first-loading-fuel of the High Temperature engineering Test Reactor

Sawa, Kazuhiro; Tobita, Tsutomu*; Mogi, Haruyoshi; Shiozawa, Shusaku; Yoshimuta, Shigeharu*; Suzuki, Shuichi*; *

Journal of Nuclear Science and Technology, 36(8), p.683 - 690, 1999/08

 Times Cited Count:32 Percentile:88.99(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Detailed description and user's manual of high burnup fuel analysis code EXBURN-I

Suzuki, Motoe; Saito, Hioraki*

JAERI-Data/Code 97-046, 210 Pages, 1997/11

JAERI-Data-Code-97-046.pdf:5.41MB

no abstracts in English

Journal Articles

Advanced coatings for HTGR fuel particles against corrosion of SiC layer

Minato, Kazuo; Fukuda, Kosaku; Ishikawa, Akiyoshi; Mita, Naoaki

Journal of Nuclear Materials, 246(2-3), p.215 - 222, 1997/00

 Times Cited Count:16 Percentile:75.8(Materials Science, Multidisciplinary)

no abstracts in English

JAEA Reports

Experimental data report for test TS-5; Reactivity initiated accident test in the NSRR with pre-irradiated BWR fuel rod

Nakamura, Takehiko; ; Ishijima, Kiyomi; ; Yamahara, Takeshi; ; Ito, Tadaharu

JAERI-Research 95-080, 92 Pages, 1995/11

JAERI-Research-95-080.pdf:8.22MB

no abstracts in English

JAEA Reports

Review of experimental studies of zirconium carbide coated fuel particles for high temperature gas-cooled reactors

Minato, Kazuo; Ogawa, Toru; Fukuda, Kosaku

JAERI-Review 95-004, 26 Pages, 1995/03

JAERI-Review-95-004.pdf:0.95MB

no abstracts in English

48 (Records 1-20 displayed on this page)